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Abstract1

A growing literature in economics and epidemiology has exploited changes in wind2

patterns as a source of exogenous variation to better measure the acute health ef-3

fects of air pollution. Since the distribution of wind components is not randomly4

distributed over time and related to other weather parameters, multivariate regres-5

sion models are used to adjust for these confounding factors. However, this type6

of analysis relies on its ability to correctly adjust for all confounding factors and7

extrapolate to units without empirical counterfactuals. As an alternative to cur-8

rent practices and to gauge the extent of these issues, we propose to implement a9

causal inference pipeline to embed this type of observational study within an hy-10

pothetical randomized experiment. We illustrate this approach using daily data11

from Paris, France, over the 2008-2018 period. Using the Neyman-Rubin poten-12

tial outcomes framework, we first define the treatment of interest as the effect of13

North-East winds on particulate matter concentrations compared to the effects of14

other wind directions. We then implement a matching algorithm to approximate15

a pairwise randomized experiment. It adjusts nonparametrically for observed con-16

founders while avoiding model extrapolation by discarding treated days without17

similar control days. We find that the effective sample size for which treated and18

control units are comparable is surprisingly small. It is however reassuring that re-19

sults on the matched sample are consistent with a standard regression analysis of20

the initial data. We finally carry out a quantitative bias analysis to check whether21

our results could be altered by an unmeasured confounder: estimated effects seem22

robust to a relatively large hidden bias. Our causal inference pipeline is a principled23

approach to improve the design of air pollution studies based on wind patterns.24
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1 Introduction25

A growing literature in economics and epidemiology has recently re-examined the26

short-term effects of air pollution on mortality and emergency admissions using27

causal inference methods. Among these techniques, instrumental variable strate-28

gies have been very popular since they can overcome the biases caused by unmea-29

sured confounders and measurement errors in air pollution exposure (1, 2, 3, 4, 5,30

6). Daily changes in wind directions are such instrumental variables since they ar-31

guably meet two of the three main requirements for the method to be valid: they32

can strongly affect air pollutant concentrations while having no direct effects on33

health outcomes (7, 8, 9). This strategy however rests on the remaining assumption34

that changes in wind directions occur randomly, which is often not credible with-35

out further statistical adjustments. One could unfortunately fear that the resulting36

analysis would depend on the quality of the model (10, 11). Does the model take37

into account all relevant confounding factors, and if so, are they adjusted for with38

the correct functional forms? Is the model also able to extrapolate when there is39

little overlap in covariate distributions?40

To illustrate these issues, imagine that we are interested in estimating the influ-41

ence of particulate matters on daily mortality in Paris, France, over the 2008-201842

period. Research in atmospheric science has shown that winds blowing from the43

North-East could transport particulate matters due to wood burning in the region44

but also from other sources located in North-Eastern Europe (12, 13, 14). We could45

therefore use the comparison of winds blowing from the North-East to those from46

other directions as an instrumental variable for particulate matters.47
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Figure 1: Polar Plots of Air Pollutant Concentrations Predicted by Wind Compo-
nents and Average Temperature Imbalance of Wind Directions by Year and Month.
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Notes: In panel A, each plot represents the concentrations (in µg/m3) of an air pollutant that were
predicted using a generalized additive model based on a smooth isotropic function of the two wind
components u and v (15). The direction from which the wind blows is described on a 360° compass
rose and wind speed (in m/s) is represented by a series of increasing circles starting from the inter-
section of the two cardinal directions axes where wind speed is null: the farther the circle is away
from the intersection, the faster the wind speed is. In panel B, the density distribution of the average
temperature (in °C) is drawn for North-East winds (orange colour) and other wind directions (blue
colour). The figure is divided into subplots by month and year (2008-2010).

In Panel A of Figure 1, we display polar plots of air pollutant concentrations that48

were predicted using a Generalized Additive Model (GAM) and wind components49

as inputs (15). We clearly see that winds blowing from the North-East are associated50

with higher PM10 and PM2.5 concentrations. These patterns could however be con-51

founded by other variables such as the weather parameters or a shared seasonality52

in air pollution and wind patterns. For instance, in Panel B of Figure 1, the density53

distribution of the average temperature (°C) is not similar for the groups of wind54

directions. We must take into account this confounding variable if we want to make55
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the as-if random distribution of North-East wind more credible. Multivariate lin-56

ear regression have been the standard approach to help achieve this goal but more57

flexible methods such as generalized additive models and machine learning algo-58

rithms could also be used (16, 17). Yet, even a very flexible model will not overcome59

the second issue visible in Panel B of Figure 1: as for January 2008, the model will60

sometimes depend on extrapolation since there are no empirical counterfactuals to61

estimate what would have happened had the wind blown from the North-East. Fi-62

nally, it could be argued that we fail to adjust for a confounding variable which we63

have not measured. In addition to explaining with qualitative arguments why it is64

not likely the case, we should also try to quantify the bias induced by an unmea-65

sured confounder.66

In this paper, we show how we can evaluate the extent to which studies exploit-67

ing wind directions as instrumental variables could be prone to the issues raised68

above. To achieve this goal, we follow the four consecutive stages of the causal in-69

ference pipeline proposed by (18, 19) that explicitly embed the design of this type of70

observational study within an hypothetical randomized experiment (20, 21, 22, 23).71

First, in a conceptual stage, we clearly state the causal question of interest us-72

ing the Neyman-Rubin potential outcomes framework (24, 25). Our treatment of73

interest is the effect of North-East winds on air pollution compared to other wind74

directions. To estimate this effect, for treated days with winds blowing from the75

North-East, we need to impute the concentrations that would have been observed76

had winds blown from other directions. The issue is that wind patterns are not77

randomly assigned: control days with wind blowing from other directions are not78

similar to treated days.79

We therefore implement a design stage where we approximate a pairwise ran-80

domized experiment using a matching algorithm recently designed for air pollution81

studies (26). Matching is a transparent method to adjust for confounders without82

4



making parametric assumption and directly looking at observed outcomes (27, 28).83

Given a set of chosen covariate distances, each treated day is matched to its closet84

control day. This method also avoids model extrapolation since treated days for85

which no control days exist in the data are discarded from the analysis.86

The third step is an analysis stage where we estimate the influence of North-East87

winds on air pollutant concentrations. We simply compute the average difference in88

concentrations between matched treated and control days and rely on Neymanian89

inference to compute an estimate of the sampling variability (22). The last and90

fourth step is to carry out a sensitivity analysis. Throughout the previous steps, we91

must make the strong assumption that no unmeasured variables could be related92

both to wind patterns and air pollutant concentrations. Quantitative bias analysis93

was initially proposed by (29) to assess which magnitude of hidden bias would be94

required to alter observed results. We follow here the method developed by (21)95

and (30).96

With this study, we aim to bring two contributions to the causal inference lit-97

erature on the acute health effects of air pollution. First, we show that using wind98

directions as instrumental variables requires more caution to make the assumption99

that they are “as-if” randomly distributed according to observed covariates con-100

vincing. The effective sample size where treated and control units are similar on101

a set of observed covariates is actually small. The standard approach used in the102

literature based on multivariate regression models will therefore rely on its ability103

to adjust correctly for the functional forms of covariates and extrapolate to units104

without empirical counterfactuals. Second, our quantitative bias analysis reveals105

that the estimated increase in particulate matter concentrations due to North-East106

winds is relatively robust to the presence of hidden bias. Even if an unobserved107

confounding factor is twice more common among days with winds blowing from108

the North-East than among days with winds from other directions, the large range109
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of estimates consistent with the data remains positive.110

We also hope that the approach we propose in this paper could be of interest to111

atmospheric scientists. The fact that wind patterns play a key role in the variation112

of air pollution concentrations is obviously not new (31, 32, 33, 34). Yet, causal in-113

ference methods have rarely been implemented in atmospheric science to estimate114

the influence of weather parameters on air pollution. We believe that mimicking a115

randomized experiment corresponds to an intuitive approach and could comple-116

ment source apportionment and emission inventory approaches. While wind is117

non manipulable, emission sources are and our framework could also serve as a118

stepping-stone to evaluate potential interventions to control emissions—if a source119

is shut-down in the North-East of Paris, would wind blowing from this direction120

influence less specific air pollutant concentrations?121

We took great care to make our work fully reproducible to help researchers im-122

plement but also improve and criticize our approach. Data and detailed R codes are123

available at https://lzabrocki.github.io/design_stage_wind_air_pollution/124

and backed-up in an Open Science Framework repository (35).125

2 Methods126

2.1 Data127

We built a dataset combining daily time series of air pollutant concentrations and128

weather parameters in Paris over the 2008-2018 period. We chose to carry out an129

analysis at the daily level as done in studies on the acute health effects of air pollu-130

tion (3, 4, 6).131

First, we obtained hourly air quality data from AirParif, the local air quality132

monitoring agency. Figure 2 displays the location of the selected measuring stations.133
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Figure 2: Map of road network and location of air pollution measuring stations in
Paris, France.

PA01H

PA04C
PA06

PA07

PA12
PA13

PA15L

PA18

3 km

N

48.82°N

48.84°N

48.86°N

48.88°N

48.90°N

2.25°E 2.30°E 2.35°E 2.40°E

Longitude

La
tit

ud
e

Legend: Stations

Notes: Grey lines represent the road network. The orange line is the orbital ring surrounding Paris.
Blue crosses are the locations of air pollution measuring stations. NO2 concentrations are measured
at stations PA07, PA12, PA13, PA18; O3 concentrations at PA13, PA18; PM10 at PA18; PM2.5 at PA01H
and PA04C. The map was created with the R programming language (version 4.1.0) (36), data were
provided by OpenStreetMap (37) and retrieved with the osmdata package (38).

Using a 2.5% trimmed mean, we first averaged at the daily level the concentrations134

(µg/m3) of background measuring stations for NO2, O3 and PM10. For a given day,135

if more than 3 hourly readings were missing, the average daily concentration was136

set to missing. The proportion of missing values for stations ranged from 2.8% up137

to 9.1%. We also computed the average daily concentrations of PM2.5 but 25% of the138

recordings were missing: the air pollutant was not measured by Airparif between139

2009/09/22 and 2010/06/23. It is important to note that we did not retrieve data140

from traffic monitors but only from background monitors as they are used to assess141
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the residential exposure of a city population in epidemiological studies.142

We then retrieved meteorological data from the single monitoring station lo-143

cated in the South of the city and ran by the French national meteorological service144

Météo-France. We extracted daily observations on wind speed (m/s), wind direction145

(measured on a 360° wind rose where 0° is the true North), the average temperature146

(°C), and the rainfall duration (min). Weather parameters had very few missing147

values (e.g., at most 2.5% of observations were missing for the rainfall duration).148

Finally, to avoid working with a reduced sample size, we imputed missing val-149

ues for all variables but PM2.5. There were no clear patterns in the missingness150

of NO2, O3 and PM10 concentrations. We used the chained random forest algo-151

rithm implemented by the R package missRanger (39). A small simulation exercise152

showed that it had good performance for imputing NO2 concentrations (the abso-153

lute difference between observed and imputed values was equal to 3.2 µg/m3 for154

an average concentration of 37.6 µg/m3) but was much less effective for imputing155

PM10 concentrations (the absolute difference between observed and imputed values156

was equal to 6.1 µg/m3 for an average concentration of 23.4 µg/m3). Once the data157

were imputed, we averaged the air pollutant concentrations at the city level as it is158

the spatial level of analysis used in (3, 4).159

Further details on data wrangling and an exploratory analysis of the data can be160

found in the supplementary materials (https://lzabrocki.github.io/design_sta161

ge_wind_air_pollution, tab Data). We were not allowed to share weather data from162

Météo-France so we added some noise to the weather parameters.163

2.2 A Causal Inference Pipeline164

We present below the four stages of the causal inference pipeline we advocate to165

use for improving the design of air pollution studies based on wind patterns. Its166

implementation was done with the R programming language (version 4.1.0) (36).167
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Stage 1: Defining the Treatment of Interest168

The first step of our causal inference approach is to clearly state the question we are169

trying to answer: What is the effect of North-East winds on particulate matter in Paris170

over the 2008-2018 period? This question is motivated by the exploratory analysis of171

Figure 1 and research in atmospheric science on the sources of particulate matter172

located in the North-East of the city. Our treatment of interest is therefore defined173

as the comparison of air pollutant concentrations when winds are blowing from the174

North-East (10°-90°) with concentrations when wind come from other directions.175

We frame this question in the Rubin-Neyman causal framework (24, 25). Our units176

are 4,018 days indexed by i (i=1,..., I). For each day, we define our treatment indica-177

tor Wi which takes two values. It is equal to 1 if the unit is treated (the wind blows178

from the North-East), and 0 if the unit belongs to the control group (the wind is179

blowing from another direction). Under the Stable Unit Treatment Value Assump-180

tion (STUVA), we assume that each day can have two potential concentrations in181

µg/m3 for an air pollutant: Yi(1) if the wind blows from the North-East and Yi(0) if182

the wind blows from another direction.183

The fundamental problem of causal inference states that we can only observe184

for each day one of these two potential outcomes: it is a missing data problem185

(40, 41). The observed concentration of an air pollutant Yobs is defined as Yobs =186

(1-Wi) × Yi(0) + Wi × Yi(1). If the unit is treated, we observe Yi(1). If it is a control,187

we observe Yi(0). To estimate the effect of North-East winds on air pollutant con-188

centrations, we therefore need to impute the missing potential outcomes of treated189

units—what would have been the air pollutant concentrations if the wind had blown190

from another direction?191
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Stage 2: Designing the Hypothetical Randomized Experiment192

The second stage of our causal inference pipeline is to embed our non-randomized193

study within an hypothetical randomized experiment. We are dealing with an ob-194

servational study where North-East winds are not randomly distributed through195

a year and are correlated with other weather parameters influencing air pollutant196

concentrations. In Figure 3, we plot, for each month, the absolute standardized197

mean differences between treated and control units for the average temperature,198

relative humidity and wind speed: most differences are superior to 0.1, which is199

often considered as a threshold to assess the imbalance of covariates.200

Figure 3: Evidence of Imbalance for Weather covariates.
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Notes: For each month, we compute the absolute standardized differences for continuous weather
covariates between treated and control groups. These differences are represented as blue points. The
vertical orange line is the 0.1 threshold which is used in the matching literature to spot covariates
imbalance. The vertical black line is at 0.

To better approximate a randomized experiment, we must therefore find the sub-201

set of treated units which are similar to control units. Formally, we want to make202
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plausible for this subset of units the assumption that the treatment assignment is203

independent from the potential outcomes of units given their covariates X: Pr(W204

| X, Y(0), Y(1)) = Pr(W | X). The issue is that some units’ covariates are observed205

while other are not. Unlike a randomized experiment where both observed and206

unobserved covariates will be, on average, balanced across treatment and control207

groups, we must assume that no unobserved covariates affect the treatment assign-208

ment.209

Matching methods are particularly convenient to design hypothetical random-210

ized experiments. Contrary to standard regression approaches, matching is a non-211

parametric way to adjust for observed covariates while avoiding model extrapola-212

tion since units without counterfactuals in the data are discarded from the analysis.213

Specifically, we use a constrained matching algorithm to design a pairwise random-214

ized experiment where, for each pair, the probability of receiving the treatment is215

equal to 0.5 (see (26) for further details on the algorithm). Each treated unit is216

matched to its closest unit given a set of covariate constraints which represent the217

maximum distance, for each covariate, allowed between treated and control units.218

We match on the two sets of covariates influencing both wind directions and air219

pollutant concentrations.220

First, we match on calendar variables such as the Julian date, weekend, holidays221

and bank days indicators. A treated unit could be matched up to a control unit222

with a maximum distance of 60 days. If we extend this distance, it would be easier223

to match treated units to control units but the treatment effect could be biased by224

seasonal variation in air pollutant concentrations. We match exactly treated and225

control units for the other calendar indicators.226

Second, we match on weather variables. The average temperature between treated227

and control units could not differ by more than 5°. The difference in wind speed228

must be less than 0.5 m/s. The rainfall duration (divided in four ordinal categories)229
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needs to be the same and the absolute difference in average humidity could be up to230

12 percentage points. We also force the absolute difference in PM10 concentrations231

in the previous day to be less or equal to 8 µg/m3. The thresholds we set up were232

chosen through an iterative process were we checked (i) that they led to balanced233

sample of treated and control units and (ii) that there were enough matched pairs234

to draw our inference upon.235

Finally, the Stable Unit Treatment Value Assumption (SUTVA) requires that there236

is no interference between units and no hidden variation of the treatment. To make237

this assumption more plausible, we discard from the analysis the matched pairs for238

which the distance in days is inferior to 4 days and make sure that the first lag of239

the treatment indicator for treated and control units.240

Stage 3: Analyzing the Experiment using Neymanian Inference241

In the third stage, we proceed to the analysis of our hypothetical pairwise random-242

ized experiment. Several modes of statistical inference such as Fisherian, Neyma-243

nian or Bayesian could be implemented (42). Here, we take a Neymanian perspec-244

tive where the potential outcomes are assumed to be fixed and the treatment assign-245

ment is the basis of inference. Our goal is to measure the average causal effect for the246

sample of matched units. We assume that each of the two units of a matched pair247

j has two potential concentrations for an air pollutant. If we were able to observe248

these potential outcomes, we could simply measure the effect of North-East winds249

on air pollutant concentrations by computing the finite-sample average treatment250

effect for matched treated units τfs. We would first compute for each pair the mean251

difference in concentrations and then average the differences over the J pairs. While252

we only observe one potential outcome for each unit, we can nonetheless estimate253

τfs with the average of observed pair differences τ̂ :254
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τ̂ =
1
J

J∑
j=1

(Y obs
t,j −Y

obs
c,j ) = Y

obs
t −Y obs

c

Here, the subscripts t and c respectively indicate if the unit in a given pair is treated255

or not. Since there are only one treated and one control unit within each pair, the256

standard estimate for the sampling variance of the average of pair differences is not257

defined. We can however compute a conservative estimate of the variance (22):258

V̂ (τ̂) =
1

J(J − 1)

J∑
j=1

(Y obs
t,j −Y

obs
c,j − τ̂)2

We finally compute an asymptotic 95% confidence interval using a Gaussian distri-259

bution approximation:260

CI0.95(τfs) =
(
τ̂ − 1.96×

√
V̂ (τ̂), τ̂ + 1.96×

√
V̂ (τ̂)

)
The obtained 95% confidence interval gives the set of effect sizes compatible with261

our data (43).262

Stage 4: Sensitivity Analysis263

The fourth step of our causal inference pipeline is to explore how sensitive our anal-264

ysis is to violation of the assumptions it relies upon. We carry out three types of265

robustness checks.266

First, we make the strong assumption that the treatment assignment is as-if ran-267

dom: winds blowing from the North-East occur randomly conditional on a set of268

measured covariates. Other researchers could however argue that we fail to adjust269

for unmeasured variables influencing both the occurrence of North-East winds and270

air pollutant concentrations. Within matched pairs, these unobserved counfounders271

could make the treated day more likely to have wind blowing from the North-East272
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than the control day. We therefore implement the quantitative bias analysis, also273

called sensitivity analysis, that was developed by (21) and (30). It allows us to ex-274

plore how our results would be altered by the effect of an unobserved confounder on275

the treatment odds, denoted by Γ . In our matched pairwise experiment, we assume276

that within each pair, control and treated days have the odds to see the wind blow-277

ing from the North-East: the odds of treatment is such that Γ = 1. The quantitative278

bias analysis allows to compute the 95% confidence intervals obtained for different279

values of bias the unmeasured confounder has on the treatment assignment. For in-280

stance, if we assume that an unmeasured confounder has a small effect on the odds281

of treatment (i.e., for a Γ > 1 and close to 1) but the resulting 95% confidence inter-282

val becomes completely uninformative, it would imply that our results are highly283

sensitive to hidden bias. Conversely, if we assume that an unmeasured confounder284

has a strong effect on the odds of treatment (i.e., for a large Γ ) and we find that the285

resulting 95% confidence interval remains similar, it would imply that our results286

are very robust to hidden bias. In a complementary manner, we also check whether287

unmeasured biases could be present by using the first daily lags of air pollutant288

concentrations as control outcomes (44). If our matched pairs are indeed similar in289

terms of unobserved covariates, the treatment occurring in t should not influence290

concentration of air pollutants in t − 1.291

Second, for many matched pairs, air pollutant concentrations were imputed us-292

ing the chained random forest algorithm (39). We check whether the results are293

sensitive to the imputation by re-running the analysis for the non-missing concen-294

trations.295

Third, we make sure that the treatment assignment within pairs was effective296

to increase the precision of estimates. We compare the estimate of the sampling297

variance of a pairwise randomized experiment to the one of a completely random-298

ized experiment. If the estimate of sampling variability for the pairwise experiment299
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is smaller than the estimate of sampling variability for a complete experiment, it300

means that our matching procedure was successful to match similar units within301

pairs compared to randomly selected units (22).302

3 Results303

3.1 Performance of the Matching Procedure304

Our initial dataset consists in 4,018 daily observations, divided into 912 treated305

units and 3,106 control units. The matching procedure results in 121 pairs of306

matched treated-control units—only 13% of treated units could be matched to sim-307

ilar control units given the constraints we set. In the supplementary materials308

(https://lzabrocki.github.io/design_stage_wind_air_pollution/4_compari309

ng_initial_to_matched_data.html), we show that the matched sample has differ-310

ent characteristics from the initial sample: observations belong more to the period311

ranging from May to October, their average temperature is higher and their relative312

humidity is lower.313

In Figure 4, we display how the balance of continuous and categorical covariates314

improves after the matching procedure. Blue dots represent either the absolute315

mean differences between treated and control units for continuous variables or the316

absolute differences in percentage points for categorical variables. For continuous317

covariates, the average standardized mean differences between treated and control318

days is 0.26 before matching and reduces to 0.07 after the procedure. For categorical319

covariates, the average difference in percentage points diminishes from 6.2 to 1.8320

after matching. Our matching procedure therefore leads to a consequent reduction321

of our sample size but allows us to compare treated units that are more similar to322

control units. A complete analysis of the balance improvement for each covariate is323
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available in the supplementary materials (https://lzabrocki.github.io/design_s324

tage_wind_air_pollution/6_checking_balance_improvement.html).325

Figure 4: Overall Balance Improvement in Continuous and Categorical covariates.
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Notes: In Panel A, we plot, before and after matching, the absolute standardized differences in con-
tinuous covariates between treated and control groups. Each blue dot represents an absolute mean
difference for a given covariate. In panel B, we plot, before and after matching, the absolute differ-
ence in percentage points for categorical covariates.

16

https://lzabrocki.github.io/design_stage_wind_air_pollution/6_checking_balance_improvement.html
https://lzabrocki.github.io/design_stage_wind_air_pollution/6_checking_balance_improvement.html
https://lzabrocki.github.io/design_stage_wind_air_pollution/6_checking_balance_improvement.html


3.2 North-East Wind Effects on Air Pollutant Concentrations326

For each air pollutant, we plot in Figure 5 the estimated average difference in con-327

centration (µg/m3) between North-East winds and other wind directions. We also328

display the estimated differences for the previous day and the following day. Thick329

lines represent the 95% confidence intervals while thin lines are the 99% confidence330

intervals. The third panel of Figure 5 confirms the exploratory analysis of the polar331

plot. When wind blows from the North-East, PM10 concentrations increase by 4.4332

µg/m3, with the lower and upper bounds of the 95% confidence being respectively333

equal to an increase by 1.7 µg/m3 and 7.2 µg/m3. The estimated difference rep-334

resents an 18% increase in the average concentration of PM10. We also observe a335

positive difference of 25% in PM10 concentrations the following day (point estimate336

of 4.9; 95% CI: 1.8, 8.1).337

North-East winds do not seem to influence NO2 (point estimate of 1.5; 95% CI:338

-3.4, 6.4), and O3 (point estimate of -1.2; 95% CI: -5.5, 3.1) concentrations on the339

current day. This is also the case for the concentrations of these two air pollutants340

on the following day.341

Regarding the effects of North-East winds on PM2.5, we restrain our analysis342

to pairs without missing concentrations. For the current and following days, we343

respectively find an average increase of 1.4 µg/m3 (95% CI: -0.6, 3.4) and 2.7 µg/m3
344

(95% CI: 0.8, 4.5). These point estimates respectively represent a 8.8% and a 17%345

relative increases in PM2.5 concentrations.346

3.3 Sensitivity Analysis347

Our quantitative bias analysis reveals that if we have failed to adjust for an un-348

observed confounder twice more common among treated days, the resulting 95%349

confidence intervals for the estimated effects of North-East winds on PM10 would350
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Figure 5: Effects of North-East Winds on Air Pollutant Concentrations.
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Notes: In each panel, we plot the estimated effects of North-East winds on air pollutant concentra-
tions for the previous, current and following days. Point estimates are depicted by blue points; blue
thick lines are 95% confidence intervals and thin lines are 99% confidence intervals. The 95% and
99% confidence intervals associated with the estimated average difference in PM10 in the first lag
are smaller than other intervals for the following days since we added a constraint in the matching
procedure for this lag of the air pollutant.

be equal to (0.5, 9) for the current day and to (-0.2, 10) for the the following day.351

Confidence intervals are still consistent with mostly positive effects but are rela-352

tively wide. As a complementary test for unobserved confounders, we also check353

that the occurrence of North-East winds on the current day does not have any effect354

on concentrations measured in the previous day. Reassuringly, for NO2 and O3, 95%355

confidence intervals do not suggest clear negative or positive average differences in356

concentrations as shown in Figure 5 (for PM2.5, the estimated average difference is357

-0.1 µg/m3 (95% CI: -1.2, 1)).358

In the supplementary materials (https://lzabrocki.github.io/design_stage359

_wind_air_pollution/7_analyzing_results.html), we check whether the impu-360

tation of missing air pollutant concentrations did not drive our results. For NO2,361

O3 and PM10, 13%, 8% and 7% of concentrations were respectively imputed. We362
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replicate our analysis on the subset of pairs without missing observations: point363

estimates remain very similar but confidence intervals are a bit larger due to the364

sample size loss. This robustness check implies that our imputation did not bias365

our estimates.366

Finally, the pairwise design of our hypothetical experiment does not help in-367

crease the precision of the estimated differences in PM10 concentrations. The stan-368

dard error under a completely randomized assignment is equal to 1.35 while the369

one of a pairwise randomized assignment is 1.4. The pairwise design however in-370

creases the precision estimates for O3 by 23% for O3 but decreases the precision by371

42% for NO2.372

4 Discussion373

In our study, we follow a causal inference pipeline to craft a hypothetical exper-374

iment for measuring the effects of North-East winds on daily particulate matter375

concentrations in Paris. Our constrained pair matching algorithm enables us to find376

the subset of treated days that were similar to control days for a set of calendar and377

weather confounding factors. Compared to a statistical adjustment based on a mul-378

tivariate regression model, matching is non-parametric and avoids to extrapolate to379

units without empirical counterfactuals. At the very heart of this method, graphical380

displays of covariates balance allow to check in a transparent manner whether the381

as-if random distribution of the treatment was achieved conditional on observed382

confounders. We were surprised that covariates balance could only be achieved for383

13% of treated units. It would be an interesting question for future research to see384

if alternative methods such as cardinality matching or bayesian additive regression385

trees lead to similar results (45, 46, 47). The relevant structure of the hypothetical386

experiment to target should also be of interest since our pair matching algorithm387

19



failed to increase the precision of estimates compared to a completely randomized388

assignment of the treatment.389

The difficulty to find similar treated and control units could lead researchers390

interested in the acute health effects of air pollution to worry that instrumental391

variable strategies exploiting wind patterns and based on multivariate regression392

models might suffer from extrapolation bias (10, 27). In the supplementary materi-393

als (https://lzabrocki.github.io/design_stage_wind_air_pollution/7_analyzi394

ng_results.html), we show that results based on an outcome regression approach,395

even if they are based on the entire sample, are consistent with those found with the396

matched data. This may increase the confidence in the capability of a multivariate397

regression model to correctly extrapolate. Matching estimates are however much398

less precise. Further research is therefore needed to better understand if improving399

the design stage of instrument variable studies with matching methods is feasible400

given the small sample size it entails (48, 49, 50, 51). If it is the case, could matching401

methods actually lead to different results (52, 53, 54)?402

In addition to providing evidence on the effective sample size for which covari-403

ates balance was achievable, our study was the occasion to assess whether the esti-404

mated effects of North-East wind on particulate matters were robust hidden bias. It405

would require an unmeasured confounder twice more common among treated days406

to raise doubt on the direction of the estimated effects. This raises our confidence407

in the assumption that North-East wind are also randomly distributed according to408

unobserved variables. To the best of our knowledge, this assumption was waiting to409

be quantitatively evaluated. This could be explained by the fact that the sensitivity410

analysis we rely on was developed for pairwise matched data (30). As an alternative,411

researchers wishing to keep working with a regression approach could implement412

the new method developed by (55, 56).413

Finally, our study presents two main limits regarding the improvement of the414
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design stage of air pollution studies based on wind directions. The first limit con-415

cerns the definition of the contrast of interest, that is to say the difference of air416

pollutant concentrations between North-East winds and other wind directions. If417

this comparison is easy to understand, the treatment we defined is not manipula-418

ble contrary to those found in randomized controlled trials. It might lack a certain419

appeal to policy-makers as our estimates only indicate whether North-East winds420

lead to higher particulate matter concentrations than other wind directions (57, 58),421

without determining the origin of the sources emitting the air pollutant. To over-422

come this limit, a study exploiting variations in wind directions should be combined423

with a clear shock on one of the sources emitting an air pollutant. For instance, in a424

recent paper in Southern California (34), it was shown that Santa Ana winds have a425

predominant ventilation effect on PM2.5 but when inland wildfires occur, Santa Ana426

winds are instead increasing PM2.5 levels on the coast.427

The second limit revolves around the assumption that, for wind direction to be428

a valid instrument, its effects on a health outcome must be fully mediated by a sin-429

gle air pollutant (7, 8, 9). As recognized by researchers, studies exploiting wind430

patterns could violate this assumption if changes in wind direction affect simulta-431

neously several air pollutants. In our study, once the data are matched, it seems432

that North-East winds only influence particulate matter, which could reinforce the433

credibility of the assumption. Yet, this should not be always the case as it would be434

highly dependent on the city and air pollutant investigated. Methodological work is435

much needed to understand in which cases the air pollutants co-variance structure436

could lead to biased dose-response. In a recent work, (59) propose to run a multi-437

pollutant model where each air pollutant concentration is predicted by selecting the438

optimal set of instrumental variables using least absolute shrinkage and selection439

operator (lasso). The authors show that results of an instrumented multi-pollutant440

model can be very different from those found by single-pollutant models. It remains441
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to be studied if matching could also help limit this well-known issue.442
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